Samantha Archer

PhD Student, Stanford University

Phone: 703-862-1246 Email: samanthaarcher@stanford.edu

EDUCATION

2023 - Current	Stanford University PhD Student, Electrical Engineering Department Advisor: Dr. Caroline Trippel
2016 - 2020	Duke University BSE Electrical & Computer Engineering BA Mathematics GPA: 4.0/4.0

RESEARCH INTERESTS

My interests lie broadly in computer architecture and hardware design. Recently I have been working on problems related to hardware security, specifically quantifying side channel leakage in cryptographic programs using microarchitectural-informed side channel analysis. Beyond security, I am interested in hardware design optimization, memory consistency models, formal methods, and information theory applied to hardware design.

AWARDS

- 1. NSF CSGrad4US Fellowship (August 2022)
- 2. Charles Ernest Seager Memorial Award, Duke University (May 2020)
- 3. Walter J. Seeley Scholastic Award, Duke University (May 2020)
- 4. Summa Cum Laude, Duke University (May 2020)
- 5. IEEE-Eta Kappa Nu (December 2019)
- 6. Tau Beta Pi (May 2019)
- 7. Dean's List with Distinction, Duke University (Sept 2016 May 2020)

PUBLICATIONS

CONFERENCE

Samantha Archer, Georgios Mappouras, Robert Calderbank, and Daniel J. Sorin. "Foosball Coding: Correcting Shift Errors and Bit Flip Errors in 3D Racetrack Memory." 50th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2020), June 2020.

WORKSHOPS

Samantha Archer, Mohammad Rahmani Fadiheh, Caroline Trippel. "SYMLEAK: Quantifying Side Channel Leakage with Symbolic Execution." FMCAD Student Forum in conjunction with Formal Methods in Computer-Aided Design 2024. October 2024.

Samantha Archer, Mohammad Rahmani Fadiheh, Caroline Trippel. "Quantifying Software Leakage via Transmitters with Leakage Functions." 6th Young Architect Workshop (YArch) in conjunction with 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2024). April 2024.

THESIS

Samantha Archer. "Foosball Coding: Improving Error Tolerance in 3D Racetrack Memory." Undergraduate Thesis. May 2020.

PRESENTATIONS

CONFERENCE TALKS

"Foosball Coding: Correcting Shift Errors and Bit Flip Errors in 3D Racetrack Memory." 50th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2020), June 2020.

PATENTS

Patent Pending: United States Provisional Application No. 63/312,864. "Heart Rate Monitor." Inventors: Mary S. Elder, Amy D. Nicholson, Juliane M. Henne, Shawn R. Harvill, Sarah C. Bland, **Samantha R. Archer**. Filed: Dec. 29, 2022.

PROFESSIONAL EXPERIENCE

2023 - Current	Stanford University Graduate Student Researcher Advisor: Dr. Caroline Trippel	Stanford, CA
2020-2023	NVIDIA Corporation Senior Hardware Engineer ASIC Logic Design & Implementation	Santa Clara, CA
2019 - 2020	Duke University Undergraduate Research Assistant Advisors: Dr. Dan Sorin and Dr. Robert Calderbank	Durham, NC
2017 - 2020	Duke University Teaching Assistant	Durham, NC

Summer 2019

NVIDIA Corporation Physical Design Intern

TECHNICAL PROJECTS

Fall 2023 - Fall 2024	Leakage Quantification for Hardware Side Channels Using microarchitectural leakage contracts and symbolic execution to evaluate side channel leakage for cryptographic programs	Stanford Independent Research
Winter 2024	Reconfigurable Dataflow Memory Consistency Researched the memory consistency model of reconfigurable dataflow architecture	Stanford Independent Research
Fall 2023	Data Compression and Security Researched and evaluated security vulnerabilities related to data compression algorithms and applications	Stanford Course Project
2020-2023	Physical Synthesis Flow Design Worked on projects related to designing and maintaining an efficient register-transfer level (RTL) to gate-level synthesis flow for all NVIDIA chips in order to achieve the best power, performance, and area	NVIDIA Industry Project
Spring 2020	Heart Rate Monitoring Wearable Design Project Designed a wearable specifically for women that monitors heart rate, detects posture, and communicates wirelessly with Garmin products	Duke Senior Design Project
Spring 2020	Constrained Codes for Mitigating Crosstalk Applied finite state machine codes to prevent crosstalk across signals on a 3x3 array of wires	Duke Independent Research
Fall 2020	Coding for Racetrack Memory Developed a coding scheme to detect and correct bit flip and shift errors in 3D racetrack memory	Duke Independent Research
Summer 2019	IR Drop Methodology Evaluated and summarized IR drop analysis methodologies on NVIDIA designs	NVIDIA Intern Project
TEACHING		

Spring 2020 T	ΓA	ECE 350L: Digital Systems	Duke
---------------	----	---------------------------	------

Fall 2019	TA	ECE 350L: Digital Systems	Duke
Spring 2019	TA	Math 112L: Laboratory Calculus II	Duke
Spring 2018	TA	Math 106L: Laboratory Calculus and Functions II	Duke
Fall 2017	TA	Math 105L: Laboratory Calculus and Functions I	Duke
Spring 2017	TA	Math 112L: Laboratory Calculus II	Duke

PROFESSIONAL SERVICE & ORGANIZATIONS

ORGANIZATIONS

- 1. Stanford Women in Electrical Engineering, Student Member
- 2. Duke Technology Scholars, Alumna
- 3. Society of Women Engineers, Student Member
- 4. Association for Computing Machinery (ACM), Student Member

SERVICE

2020 - 2023	NVIDIA Recruiting Volunteer	Spoke on panels and at recruiting events aimed at promoting diversity in NVIDIA's intern and college graduate recruiting classes
2020 - 2023	Duke Technology Scholars	Mentored college students who are interested in careers in technology
2016 - 2017	FEMMES+	Lead educational activities for elementary school girls interesting in STEM fields

COURSEWORK

Graduate: Introduction to Automated Reasoning; Data Compression: Theory and Applications; Convex Optimization; Introduction to Cryptography; Computer Systems Architecture; Programming Languages *Undergraduate*: Computer Architecture; Digital Systems; Coding Theory with Applications in Data Science; Fundamentals of Microelectronic Circuits; Systems and Signals; CMOS VLSI Design; Wearables and Ubiquitous Computing

ENVIRONMENTS, LANGUAGES, & DESIGN TOOLS EXPERIENCE

UNIX, Python, Verilog, TCL, C, C++, Make, MATLAB, Alloy