Samantha Archer PhD Student, Stanford University Phone: 703-862-1246 Email: samanthaarcher@stanford.edu # **EDUCATION** 2023 - Current Stanford University PhD Student, Electrical Engineering Department Advisor: Dr. Caroline Trippel **2016 - 2020 Duke University** BSE Electrical & Computer Engineering BA Mathematics GPA: 4.0/4.0 # RESEARCH INTERESTS My interests lie broadly in computer architecture and hardware design. Recently I have been working on problems related to hardware security, specifically quantifying side channel leakage in specific programs using microarchitectural-informed side channel analysis. Beyond security, I am interested in hardware design optimization, memory consistency models, formal methods, and information theory applied to hardware design. #### **AWARDS** - 1. NSF CSGrad4US Fellowship (August 2022) - 2. Charles Ernest Seager Memorial Award, Duke University (May 2020) - 3. Walter J. Seeley Scholastic Award, Duke University (May 2020) - 4. Summa Cum Laude, Duke University (May 2020) - 5. IEEE-Eta Kappa Nu (December 2019) - 6. Tau Beta Pi (May 2019) - 7. Dean's List with Distinction, Duke University (Sept 2016 May 2020) #### **PUBLICATIONS** #### **CONFERENCE** **Samantha Archer**, Georgios Mappouras, Robert Calderbank, and Daniel J. Sorin. "Foosball Coding: Correcting Shift Errors and Bit Flip Errors in 3D Racetrack Memory." 50th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2020), June 2020. #### **WORKSHOPS** **Samantha Archer**, Mohammad Rahmani Fadiheh, Caroline Trippel. "Quantifying Software Leakage via Transmitters with Leakage Functions." 6th Young Architect Workshop (YArch) in conjunction with 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2024). April 2024. ### **THESIS** **Samantha Archer.** "Foosball Coding: Improving Error Tolerance in 3D Racetrack Memory." Undergraduate Thesis. May 2020. # **PRESENTATIONS** #### CONFERENCE TALKS "Foosball Coding: Correcting Shift Errors and Bit Flip Errors in 3D Racetrack Memory." 50th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2020), June 2020. # **PATENTS** *Patent Pending:* United States Provisional Application No. 63/312,864. "Heart Rate Monitor." Inventors: Mary S. Elder, Amy D. Nicholson, Juliane M. Henne, Shawn R. Harvill, Sarah C. Bland, **Samantha R. Archer**. Filed: Dec. 29, 2022. # PROFESSIONAL EXPERIENCE | 2023 - Current | Stanford University Graduate Student Researcher Advisor: Dr. Caroline Trippel | Stanford, CA | |----------------|---|-----------------| | 2020-2023 | NVIDIA Corporation Senior Hardware Engineer ASIC Logic Design & Implementation | Santa Clara, CA | | 2019 - 2020 | Duke University Undergraduate Research Assistant Advisors: Dr. Dan Sorin and Dr. Robert Calderbank | Durham, NC | | 2017 - 2020 | Duke University Teaching Assistant | Durham, NC | | Summer 2019 | NVIDIA Corporation Physical Design Intern | Santa Clara, CA | # TECHNICAL PROJECTS | Fall 2023 -
Summer 2024 | Leakage Quantification for Hardware Side Channels Using microarchitectural leakage contracts and symbolic execution to quantify side channel leakage for cryptographic programs | Stanford
Independent Research | |----------------------------|---|----------------------------------| | Winter 2024 | Reconfigurable Dataflow Memory Consistency Researched the memory consistency model of reconfigurable dataflow architecture | Stanford
Independent Research | | Fall 2023 | Data Compression and Security Researched and evaluated security vulnerabilities related to data compression algorithms and applications | Stanford
Course Project | | 2020-2023 | Physical Synthesis Flow Design Worked on projects related to designing and maintaining an efficient register-transfer level (RTL) to gate-level synthesis flow for all NVIDIA chips in order to achieve the best power, performance, and area | NVIDIA
Industry Project | | Spring 2020 | Heart Rate Monitoring Wearable Design Project Designed a wearable specifically for women that monitors heart rate, detects posture, and communicates wirelessly with Garmin products | Duke
Senior Design Project | | Spring 2020 | Constrained Codes for Mitigating Crosstalk Applied finite state machine codes to prevent crosstalk across signals on a 3x3 array of wires | Duke
Independent Research | | Fall 2020 | Coding for Racetrack Memory Developed a coding scheme to detect and correct bit flip and shift errors in 3D racetrack memory | Duke
Independent Research | | Summer 2019 | IR Drop Methodology Evaluated and summarized IR drop analysis methodologies on NVIDIA designs | NVIDIA
Intern Project | | TEACHING | | | | Spring 2020 | TA ECE 350L: Digital Systems | Duke | | Fall 2019 | TA ECE 350L: Digital Systems | Duke | | Spring 2019 | TA Math 112L: Laboratory Calculus II | Duke | | Spring 2018 | TA | Math 106L: Laboratory Calculus and Functions II | Duke | |-------------|----|---|------| | Fall 2017 | TA | Math 105L: Laboratory Calculus and Functions I | Duke | | Spring 2017 | TA | Math 112L: Laboratory Calculus II | Duke | # PROFESSIONAL SERVICE & ORGANIZATIONS # **ORGANIZATIONS** - 1. Stanford Women in Electrical Engineering, Student Member - 2. Duke Technology Scholars, Alumna - 3. Society of Women Engineers, Student Member - 4. Association for Computing Machinery (ACM), Student Member # **SERVICE** | 2020 - 2023 | NVIDIA Recruiting Volunteer | Spoke on panels and at recruiting events aimed at promoting diversity in NVIDIA's intern and college graduate recruiting classes | |-------------|-----------------------------|--| | 2020 - 2023 | Duke Technology Scholars | Mentored college students who are interested in careers in technology | | 2016 - 2017 | FEMMES+ | Lead educational activities for elementary school girls interesting in STEM fields | # **COURSEWORK** Graduate: Introduction to Automated Reasoning; Data Compression: Theory and Applications; Convex Optimization; Introduction to Cryptography; Computer Systems Architecture Undergraduate: Computer Architecture; Digital Systems; Coding Theory with Applications in Data Science; Fundamentals of Microelectronic Circuits; Systems and Signals; CMOS VLSI Design; Wearables and Ubiquitous Computing # ENVIRONMENTS, LANGUAGES, & DESIGN TOOLS EXPERIENCE UNIX, Python, Verilog, TCL, C, C++, Make, MATLAB, Alloy